tp钱包正版app下载|ceramic

作者: tp钱包正版app下载
2024-03-07 17:46:40

ceramic, porcelain 等词在代指「陶瓷」时,有什么差异? - 知乎

ceramic, porcelain 等词在代指「陶瓷」时,有什么差异? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册艺术英语手工艺陶瓷陶器ceramic, porcelain 等词在代指「陶瓷」时,有什么差异?问题字数有限制,完整的相关词汇列表是: 1. ceramic 2. porcelain 3. earthenware 4. pottery 5. te…显示全部 ​关注者64被浏览94,119关注问题​写回答​邀请回答​好问题 3​添加评论​分享​8 个回答默认排序有泉​ 关注我来从词源的角度答一发吧。最早的词是pot,出现在公元12世纪,指用土烧制的容器,现在多指茶壶或者咖啡壶。pot加er, potter,陶匠。我和鬼佬吹牛逼的时候特喜欢说I am a potter。感觉自己头顶闪烁着工匠精神,以及,魔法光环。魔法你知道的,Harry Potter,harry意思是骚扰,potter是陶匠,那么哈里波特的中文名应该叫陶骚。还有另一个著名的童话角色,彼得兔,作者也姓陶,Beatrix Potter。古希腊陶罐陶在中国也是姓,并非源于职业。陶姓起源于尧帝,《禹贡》说:“陶丘有尧城,尧尝所居,故尧号陶唐氏”。陶本义为两座小山,《说文》:“陶,再成丘也”,有两个音,逃和尧,比如山西平遥,旧时写作平陶。再比如《千字文》中,“推位让国,有虞陶唐”,这里的陶就读作尧。那么陶是如何发展出陶器的意思呢?上古时称陶为瓦,许慎说“瓦,土器已烧之总名”。用以盛放酒水的瓦为缶,许多器皿是缶傍的,比如罂、缽、罍、罐。《诗经》有“坎其击缶,宛丘之道”一句,意为敲缶唱歌,《说文》:“缶,瓦器所以盛酒浆,秦人鼓之以节歌。”缶是象形字,上面的午意为杵,下面的凵是有口器皿,指用木棍制作陶坯。做好的陶坯要放到土穴里点火里烧,这就引出了另一个象形字,窑。《说文》:“窑,烧瓦灶也。”清段玉裁认为,匋与窑都是缶傍,而且同音,是异体字。后来匋加上耳刀,表示匋器,就是陶,读音也变成了逃。瓷从陶演化而来,在汉代成熟,这时出现了瓷字,形声字,从瓦,音次。《玉篇》:“瓷,陶之至坚者”。早期外销青花,欧洲人称之为克拉克瓷Potter做的东西就是pottery,陶器的总称。瓷器传到欧洲后,人们不相信这种坚硬光亮的东西来自泥土,一度坚信瓷是用某种大贝壳雕刻而成,何以至此?容我抄一段《马可波罗游记》:“在那个省有一个城市叫景德镇,生产世界上最美丽的杯子。这些杯子都是瓷的,除了那个城市之外,世界上任何地方都不可能生产这种杯子”。马可波罗说瓷器用的是意大利语porcellana,宝贝的意思。不是宝贝儿,是宝贝,许多古文明都有用贝壳做货币的阶段,包括中国和古代意大利,用的都是这种东西。马可波罗用宝贝称呼瓷器,大概取其光泽坚硬和珍贵之意。虽然他并没有到过中国,但杜撰的游记确实在欧洲流传甚广,porcellana也就成了瓷器之名。文艺复兴时期,porcellana传入英语和法语,都写作 porcelain。梅第奇软质瓷,16世纪贝壳制瓷的流言破灭后,欧洲人开始尝试烧制瓷器。最早的一批1575年出现在佛罗伦萨,模仿中国青花瓷,因为受著名的梅第奇家族赞助,故称Medici porcelain,梅第奇瓷。这种瓷器徒有其表,光泽度、透明度、白度都不如中国瓷器,最严重的问题是软,容易磨损。为了区别坚硬的中国瓷,欧洲人称自己做的瓷器为soft-paste porcelain,软质瓷。中国瓷叫hard-paste porcelain,硬质瓷。直到1710年,德国的梅森瓷厂才生产出欧洲的第一批硬质瓷。中国的青花瓷在明代登陆欧洲,龙泉窑系的青瓷应该更早传入。欧洲人称青瓷为celadon,雪拉同。国内常见的说法是,一个叫Honore 的法国人,写了部叫LAstree的小说,后来被改成歌剧,一度万人空巷,主角Celadon是一个牧羊人,身着浅绿色长袍。欧洲人第一次见到龙泉青瓷,觉得颜色很像celadon的长袍,故而命名。问题是歌剧是1768年首演的,当时已经是清代了,而龙泉瓷曾经大量出口,最晚在元代就到欧洲了,时间对不上。大英博物馆中的龙泉青瓷还有另外两种解释,一是说celadon出自梵语,绿色石头的意思。中国瓷器好像从未卖到印度,用梵语命名青瓷,而且传到了欧洲,风牛马不相及。第三种说法,celadon是 Saladin 的误写。Saladin就是萨拉丁,阿拉伯战神,《天国王朝》里痛扁精灵王子的就是这哥们。萨拉丁曾送给叙利亚苏丹40件龙泉青瓷,叙利亚人不知为何物,便以Saladin之名称呼。那是1171年的事,当时正好是南宋,时间对上了。而且宋元时销往欧洲的瓷器多由阿拉伯商队运输,celadon一词便随之传入欧洲,我觉得这种解释最可信。骨瓷罐,英国斯波德瓷厂,1802年骨瓷是英国人在在十八世纪末发明的,因为原料中含有40%左右的牛骨粉,故名bone china,或者fine bone china。英语china有瓷器的意思,其实这个意项很少用,基本只出现在bone china上。古代欧洲人称中国为sino、sina、sin等等,来自波斯语,秦的意思。葡萄牙人最早将sina写成china,1555年传入英语。China起初只用于称呼中国,到1579年才出现瓷器之意,1634年出现了chinaware一词,也是指瓷器,大概用于避免歧义。中国古名窑瓷器,英语也用ware,比如汝窑叫Gu ware,哥窑叫Ge ware。Earthenware是十五世纪出现的词汇,陶器之意。pottery虽然也是陶,有时还可以指瓷, earthenware则是严格的陶器,特指烧成温度在1200以下的、胎质疏松并且吸水的物质。砖瓦、花盆等等,都算earthenware。茶具咖啡具一类的日用陶瓷不能叫earthenware,而叫tableware。兵马俑叫 terracotta warrior and horse 简称 terracotta armyTerracotta是拉丁语的陶器,terra是火烧,cotta是泥土。这个构词法很像古汉语的埏埴(shān zhí),埏是揉,埴是土,陶器之意,《老子》,“埏埴以为器,当其无,有器之用”。terracotta十六世纪出现在英语里,有两种意思,一是指陶质的雕像,比如中国的兵马俑。二指红陶,最原始的陶器,烧制时坯中的铁元素被充分氧化,外观呈铁锈色。Stoneware,炻器。晚明到初清,中国战乱频频,许多窑口停工,一些欧洲商人便把瓷器订单甩给日本。日本一时没有那么大的产能,便降低标准,生产出一种介于瓷和陶之间的东西应付欧洲人。日本称之为炻器,炻是日本汉字,1683年,英国人翻译成stoneware。英国碧玉细炻器,1981年炻器的主要工艺特点是,烧成温度低于瓷,高于陶。一些中国古代名窑的瓷器,比如汝窑建窑宜兴紫砂,严格说都是炻器。炻器虽然不如瓷器漂亮,但便宜,现在大部分餐具瓷砖卫浴什么的,都是炻器。做一个简单区分,瓷,不吸水,半透明;炻器,不吸水,不透明,陶器,吸水,不透明。最晚出现的词最大,大到让人觉得虚无。ceramics,指所有非金属的、无机的、固体人造物。词源为希腊语陶器keramikos,1850年首次出现在英语中。ceramics囊括了上文中的所有单词,除了我们日用的瓶瓶罐罐,工业上的隔热瓦、瓷刀、瓷轴承、水泥、玻璃等等,都算ceramics,这个用法应该对应汉语中的“硅酸盐”。编辑于 2017-08-13 12:46​赞同 92​​9 条评论​分享​收藏​喜欢收起​沙耶的果冻诗酒趁年华​ 关注根据烧造温度不同,陶瓷器分子间隙失水分子情况不一样,导致陶瓷器在三个温度区间有不同的物理性质,然而中文的分类基本上只区分了陶和瓷,并未对中间的一层进行区分,导致一些情况下与英文对应出现一些问题。低温烧造的为陶器,对应英文是earthen ware, 基本就是陶土捏成的陶器在开放的火堆上烤制,烧成温度低,有一定吸水性,基本上看到的什么仰韶或者古埃及的陶制品都为这一类第二类叫stoneware,烧造温度稍高,专业书上会译作炻器,但中文中基本会分到瓷,对应我国南北朝至宋期间的器物,大部分(不是全部)属于这一类。相对earthenware 吸水能力差(通俗说就是承水基本不会渍到外层)。烧造温度高于1200°C的才是真正意义上的瓷器,Porcelain。这种器物几乎不吸水,宋末的定窑部分产品开始达到这个水准,大部分我们日常见到的瓷器也都是指这种。1. ceramic泛指陶瓷器,是所有陶瓷制品的统称4. pottery泛指陶瓷器,会偏向指瓶瓶罐罐,而非盘子或者瓷塑5. terra cotta其本意就是“baked earth” 也就是用土烧成。其实本质和earthenware没太大差别,但是ware隐隐有一种家庭使用的实用器的意思,所以通常建筑部件啊,雕塑啊什么的就很少说是earthenware。兵马俑的翻译是terra cotta army,这样你大概能理解这指的是什么样的材料了吧。6. bone china骨瓷,是欧洲人在模仿中国瓷器时发现的通过黏土和高岭土中再添加骨粉,达到增白的高温瓷。现在日常用瓷几乎都是骨瓷7. clay黏土8. stoneware炻器最后说一下,全世界各地的陶瓷器的基础都是黏土(Clay),因为黏土来源比较简单,而且稍微烘焙一下就能成型,所以史前文明中广泛出现。但后来中国人发现了瓷石(Chinastone),并在随后发现了高岭土(Kaolinite),两种混合再加草木灰的配方使得中国的胎白,不透水,加上在釉和彩方面的不断发明创新,使得瓷器远销海外。看翻译就发现,瓷石和高岭土都是音译,现在无论哪一种瓷器,都只是混入了不同比例的瓷石和高岭土,以及后来的新添加成分。这些发现是中国为世界瓷器发展做出的巨大贡献。另外,推荐大家有机会参观伦敦维多利亚博物馆(V&A)顶楼的瓷器展厅,其中一个厅中有全世界各国流行的陶瓷器的配方和对应的质感/颜色的标本,用手触摸后会有更深刻的感受。修改发布于 2017-08-10 22:48​赞同 21​​4 条评论​分享​收藏​喜欢

CERAMIC中文(简体)翻译:剑桥词典

CERAMIC中文(简体)翻译:剑桥词典

词典

翻译

语法

同义词词典

+Plus

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录

/

注册

中文 (简体)

查找

查找

英语-中文(简体)

ceramic 在英语-中文(简体)词典中的翻译

ceramicadjective uk

Your browser doesn't support HTML5 audio

/səˈræm.ɪk/ us

Your browser doesn't support HTML5 audio

/səˈræm.ɪk/

Add to word list

Add to word list

made from clay that has been shaped and then baked until hard

陶瓷的

ceramic tiles

瓷砖

ceramics

更多范例减少例句Using glass and ceramic cups and mugs instead of Styrofoam or paper cups would cut waste.Use a 13" by 9" glass or ceramic baking dish. a shrub in a ceramic plantera three-tier ceramic cake stand

ceramicnoun [ U ] uk

Your browser doesn't support HTML5 audio

/səˈræm.ɪk/ us

Your browser doesn't support HTML5 audio

/səˈræm.ɪk/

clay that has been shaped and then baked until hard

陶瓷

The robot is made of metal, ceramic, and other materials.

这个机器人是由金属、陶瓷等材料制成的。

更多范例减少例句The exhibition of vases at Metropolitan Museum of Art contains objects in ceramic and silver.Knife-sharpening rods come in different materials such as steel, ceramic, and diamond.Don't use a metal container - use glass or microwaveable ceramic.

(ceramic在剑桥英语-中文(简体)词典的翻译 © Cambridge University Press)

C1

ceramic的翻译

中文(繁体)

陶瓷的, 陶瓷…

查看更多内容

西班牙语

de cerámica, cerámica…

查看更多内容

葡萄牙语

de cerâmica, cerâmica…

查看更多内容

更多语言

法语

土耳其语

in Dutch

捷克语

丹麦语

印尼语

泰语

越南语

波兰语

in Swedish

马来语

德语

挪威语

in Ukrainian

en céramique, objet en céramique…

查看更多内容

seramik, seramik (eşya)…

查看更多内容

keramisch, keramiek…

查看更多内容

keramický, keramika…

查看更多内容

keramisk, keramik-, keramik…

查看更多内容

keramik…

查看更多内容

ที่เกี่ยวกับเครื่องเคลือบ, ผลิตภัณฑ์เครื่องเคลือบ…

查看更多内容

thuộc đồ gốm, đồ gốm…

查看更多内容

ceramiczny, ceramika…

查看更多内容

keramisk, keramik[föremål]…

查看更多内容

seramik, tembikar…

查看更多内容

keramisch, die Töpferware…

查看更多内容

keramisk, leir(gods)-, keramikk…

查看更多内容

керамічний, гончарний, кераміка…

查看更多内容

需要一个翻译器吗?

获得快速、免费的翻译!

翻译器工具

ceramic的发音是什么?

在英语词典中查看 ceramic 的释义

浏览

CEO

cep

cephalic

cephalopod

ceramic

ceramics

cereal

cerebellar

cerebellar ectopia

“每日一词”

veggie burger

UK

Your browser doesn't support HTML5 audio

/ˈvedʒ.i ˌbɜː.ɡər/

US

Your browser doesn't support HTML5 audio

/ˈvedʒ.i ˌbɝː.ɡɚ/

a type of food similar to a hamburger but made without meat, by pressing together small pieces of vegetables, seeds, etc. into a flat, round shape

关于这个

博客

Forget doing it or forget to do it? Avoiding common mistakes with verb patterns (2)

March 06, 2024

查看更多

新词

stochastic parrot

March 04, 2024

查看更多

已添加至 list

回到页面顶端

内容

英语-中文(简体)翻译

©剑桥大学出版社与评估2024

学习

学习

学习

新词

帮助

纸质书出版

Word of the Year 2021

Word of the Year 2022

Word of the Year 2023

开发

开发

开发

词典API

双击查看

搜索Widgets

执照数据

关于

关于

关于

无障碍阅读

剑桥英语教学

剑桥大学出版社与评估

授权管理

Cookies与隐私保护

语料库

使用条款

京ICP备14002226号-2

©剑桥大学出版社与评估2024

剑桥词典+Plus

我的主页

+Plus 帮助

退出

词典

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

翻译

语法

同义词词典

Pronunciation

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录 /

注册

中文 (简体)  

Change

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

中文 (简体)

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

关注我们

选择一本词典

最近的词和建议

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

语法与同义词词典

对自然书面和口头英语用法的解释

英语语法

同义词词典

Pronunciation

British and American pronunciations with audio

English Pronunciation

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

词典+Plus

词汇表

选择语言

中文 (简体)  

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

हिंदी

தமிழ்

తెలుగు

内容

英语-中文(简体) 

 AdjectiveNoun

Translations

语法

所有翻译

我的词汇表

把ceramic添加到下面的一个词汇表中,或者创建一个新词汇表。

更多词汇表

前往词汇表

对该例句有想法吗?

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

ceramic - 搜索 词典

mic - 搜索 词典 Rewards网页图片视频学术词典地图更多航班我的必应笔记本ceramic美 [səˈræmɪk] 英 [sə'ræmɪk] n.陶瓷制品;陶瓷器;制陶艺术;陶瓷装潢艺术adj.陶器的;制陶的网络陶瓷的;陶瓷砖;陶瓷材料复数:ceramics  搭配同义词adj.+n.ceramic potadj.earthenware,clay,pottery,terracotta,terra cotta权威英汉双解英汉英英网络释义ceramic显示所有例句n.1.[c][usupl]陶瓷制品;陶瓷器a pot or other object made of clay that has been made permanently hard by heatan exhibition of ceramics by Picasso毕加索陶瓷作品展2.[u]制陶艺术;陶瓷装潢艺术the art of making and decorating ceramicsadj.1.陶器的,陶瓷的,陶质的;制陶的n.1.(一件)陶器adj.1.made from clay baked at a very high temperature so that it has become hard1.陶瓷陶瓷不沾层结合陶瓷(ceramic) 与法琅瓷(emaille / enamel)的特点,高温煅烧上锅,少了传统不沾层不耐热的缺点与黏著剂会产 …blog.zufugo.com|基于3052个网页2.陶瓷的雅思词汇表_百度文库 ... centrifugal 离心的 ceramic 陶瓷的 ceremony 典礼;仪式 ... wenku.baidu.com|基于525个网页3.陶瓷制品俞敏洪六级词汇 - 豆丁网 ... census n. 人口普遗 ceramic adj. 陶器的;n.陶瓷制品 cereal n. 谷遗食品,谷遗 ... www.docin.com|基于311个网页4.陶器的俞敏洪六级词汇 - 豆丁网 ... census n. 人口普遗 ceramic adj. 陶器的;n.陶瓷制品 cereal n. 谷遗食品,谷遗 ... www.docin.com|基于297个网页5.陶瓷砖陶瓷砖陶瓷砖(ceramic)——由粘土或其他无机非金属原料,经成型、烧结等工艺处理,用于装饰与保护建筑物、构筑物墙面 …blog.sina.com.cn|基于287个网页6.陶艺加州大学戴维斯分校 - MBA智库百科 ... 1、drawing 绘画 2、ceramic 陶艺 4、painting 油画 ... wiki.mbalib.com|基于82个网页7.陶瓷材料1-2-3 陶瓷材料(ceramic)………………………………..…..……….15 1-2-4 复合材料(composite)……………………………..…etds.lib.ncku.edu.tw|基于56个网页更多释义收起释义例句释义:全部全部,陶瓷制品陶瓷制品,陶瓷器陶瓷器,制陶艺术制陶艺术,陶瓷装潢艺术陶瓷装潢艺术,陶器的陶器的,制陶的制陶的,陶瓷的陶瓷的,陶瓷砖陶瓷砖,陶瓷材料陶瓷材料类别:全部全部,口语口语,书面语书面语,标题标题,技术技术来源:全部全部,字典字典,网络网络难度:全部全部,简单简单,中等中等,难难更多例句筛选收起例句筛选1.Just a week ago, the European commission has just announced on imports from China's ceramic tile anti-dumping investigation.就在一周前,欧盟委员会刚刚宣布对从中国进口的瓷砖发起反倾销调查。hi.baidu.com2.The invention uses cheap, clean silicon powder as raw material, the product looks like one dimensional, easy to strength ceramic toughness.本发明方法使用廉价环保的硅粉为原料,所得产物形貌是一维的,易于加强陶瓷的韧性。www.bing.com3.Taiwan's president in return handed Beijing's envoy a ceramic vase depicting orchids before both sat down together for a group photo.马英九回赠北京特使一个上面绘有兰花的陶瓷瓶。然后,双方坐在一起拍了一张合照。www.ftchinese.com4.A ceramic is often broadly defined as any inorganic nonmetallic material.陶瓷通常被概括地定义为无机的非金属材料。wenku.baidu.com5.The use of reticulated ceramic foam filters is often a very effective method to minimize casting inclusion defects.介绍通过网状泡沫陶瓷过滤器来减少铸件中夹杂物缺陷的原理和效果。www.chemyq.com6.The lamp is often made from ceramic, glass or marble with a small container for water that is heated by a tea light candle.小虫往往都是从陶瓷、玻璃或大理石与水就是一个小型集装箱加热茶蜡烛光。blog.sina.com.cn7.Lead author, Zhengwei Pan, said the material could be added to ceramic discs or mixed into paints and inks by the army and others.研究报告的主要作者潘正伟(音译)表示,这种材料可以被用于陶瓷电容器上,也可以将其与涂料和油墨混合供军队和其他机构使用。bilingual.huanqiu.com8.Tableware ceramic tableware as an important part, should be in the design throughout the design concept of modern people.陶瓷餐具作为餐具中重要的一部分,理应在设计中贯穿现代人们的设计理念。zhidao.baidu.com9.The conversation pauses as we eat, and I scan the office, taking in a collection of Russian dolls and a row of ceramic Dutch houses.我们吃东西时,谈话会暂停片刻。我环顾了一下这间办公室,看到一套俄罗斯娃娃,一排陶制荷兰小屋。www.ftchinese.com10.In her ceramic trees, natural motifs, as well as historical architectural details, are embedded in the walls, or applied to the surface.在她陶瓷树的作品中,自然主题以及历史建筑的细节被镶嵌在墙上或应用在表面。www.futogp.com12345© 2024 Microsoft隐私声明和 Cookie法律声明广告帮

china 和ceramics 有什么区别? - 知乎

china 和ceramics 有什么区别? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册英语翻译英语翻译中国陶瓷china 和ceramics 有什么区别?关于china 名字的来源,很好奇。关注者22被浏览22,751关注问题​写回答​邀请回答​好问题​添加评论​分享​4 个回答默认排序小号是留住最真的。​ 关注您好。谢邀。据我自己所了解,china这个词的出现先于ceramics。china在旧时代特指来自中国的瓷器。其实人们现在常用china 来形容用高岭土kaolin clay 做成的高质量的瓷器。至于ceramics.这个词包含的意思更广,除了可以表示china, porcelain 以外,它还可以用来指瓷砖tiles, 陶瓷下水管drainpipes 和陶瓦terracotta.发布于 2015-10-05 18:13​赞同 16​​4 条评论​分享​收藏​喜欢收起​纸婷是英语老师​Texas A&M University 教育学硕士​ 关注ceramics是一个大类词,既可以做陶瓷器讲也可以做陶瓷技术讲。做陶瓷器讲的时候是一个总称,类似vehicle. china只是大类下面的一种。根据原材料和制作工艺的不同,ceramics底下有一大堆不同的品种。 china和porcelain是一个意思都是指中国特色的这种白瓷,china体现了发源地中国这个特点,porcelain来源于拉丁porcella(seashell)体现了磁体像贝壳一般洁白光滑的质地。 貌似在美国,china用得多一点,欧洲的话说porcelain的多一点。正好大学时候上了一学期ceramics~课上大概是这么说的,希望可以可以解答你的疑惑~编辑于 2015-10-06 00:28​赞同 13​​添加评论​分享​收藏​喜欢收起​​

ceramic_百度百科

mic_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10ceramic播报讨论上传视频英语单词ceramic,英语单词,主要用作名词和形容词,主要意思为“陶瓷制品,陶瓷器;制陶艺术”等。 [1]外文名ceramic发    音英 [sɪ'ræmɪk] 美 [sə'ræmɪk]词    性名词、形容词目录1单词释义2短语搭配3双语例句单词释义播报编辑英 [səˈræmɪk] 美 [səˈræmɪk] n. 陶瓷制品,陶瓷器;制陶艺术adj. 陶瓷的[ 复数 ceramics ] [1]短语搭配播报编辑ceramic tile n. 瓷砖(有釉或无釉的)ceramic material n. 陶瓷材料;陶瓷原料piezoelectric ceramic 压电陶瓷ceramic coating 陶瓷涂层ceramic membrane 陶瓷膜ceramic filter 陶瓷过滤器ceramic fiber 陶瓷纤维ceramic powder 陶瓷粉ceramic glaze n. 釉ceramic product 陶瓷制品glass ceramic 玻璃陶瓷;陶瓷平台ceramic pigment n. 陶瓷颜料ceramic substrate 陶瓷;陶瓷基片;陶瓷衬底ceramic plate 陶瓷板ceramic capacitor [电]陶瓷电容器ceramic bearing 陶瓷轴承ceramic wall n. 陶瓷砖墙ceramic mosaic 陶瓷马赛克;陶瓷锦砖ceramic metal 金属陶瓷ceramic fibre 陶瓷纤维;耐火陶瓷纤维 [1]双语例句播报编辑1、We'll now look at another ceramic which is made from mixing sand with minerals and heating to over 600 degrees Celsius. 现在我们来看看另一种陶瓷,它是由沙子和矿物质混合,再加热到600多摄氏度制成的。2、Taihu region is one of the Chinese ceramics bases, of which the world-famous Yixing clay teapotis produced by Yixing's ceramic manufacturers. 太湖地区是中国陶瓷生产基地之一,举世闻名的宜兴陶土茶壶就是由宜兴的陶瓷生产厂家生产的。3、Well over half of those ships were carrying cargo stored in large ceramic jars, many of whichwere preserved largely intact on the ocean floor. 这些船只中有一半以上装载着储存在大型陶瓷罐子里的货物,其中许多罐子被完好无损地保存在海底。 [1]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

Ceramic composition and properties | Types, Characteristics & Uses | Britannica

Ceramic composition and properties | Types, Characteristics & Uses | Britannica

Search Britannica

Click here to search

Search Britannica

Click here to search

Login

Subscribe

Subscribe

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

On This Day

One Good Fact

Dictionary

New Articles

History & Society

Lifestyles & Social Issues

Philosophy & Religion

Politics, Law & Government

World History

Science & Tech

Health & Medicine

Science

Technology

Biographies

Browse Biographies

Animals & Nature

Birds, Reptiles & Other Vertebrates

Bugs, Mollusks & Other Invertebrates

Environment

Fossils & Geologic Time

Mammals

Plants

Geography & Travel

Geography & Travel

Arts & Culture

Entertainment & Pop Culture

Literature

Sports & Recreation

Visual Arts

Companions

Demystified

Image Galleries

Infographics

Lists

Podcasts

Spotlights

Summaries

The Forum

Top Questions

#WTFact

100 Women

Britannica Kids

Saving Earth

Space Next 50

Student Center

Home

Games & Quizzes

History & Society

Science & Tech

Biographies

Animals & Nature

Geography & Travel

Arts & Culture

Money

Videos

ceramic composition and properties

Table of Contents

ceramic composition and properties

Table of Contents

IntroductionChemical bondsCrystal structureNonconductivityBrittlenessPowder processing

References & Edit History

Related Topics

Images

For Students

ceramics summary

Related Questions

Is Internet technology "making us stupid"?

What is the impact of artificial intelligence (AI) technology on society?

Read Next

Art History: The Origins of 7 of Your Favorite Art Supplies

History of Technology Timeline

How Does Wi-Fi Work?

Discover

7 Surprising Uses for Mummies

9 Things You Might Not Know About Adolf Hitler

9 of the World’s Deadliest Snakes

Did Marie-Antoinette Really Say “Let Them Eat Cake”?

9 of the World’s Deadliest Spiders

Inventors and Inventions of the Industrial Revolution

What Is the “Ides” of March?

Home

Technology

Industry

Chemical Products

Science & Tech

ceramic composition and properties

Actions

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/technology/ceramic-composition-and-properties

Give Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Select a type (Required)

Factual Correction

Spelling/Grammar Correction

Link Correction

Additional Information

Other

Your Feedback

Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Britannica Websites

Articles from Britannica Encyclopedias for elementary and high school students.

ceramics - Children's Encyclopedia (Ages 8-11)

ceramics - Student Encyclopedia (Ages 11 and up)

Print

print

Print

Please select which sections you would like to print:

Table Of Contents

Cite

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.

Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

MLA

APA

Chicago Manual of Style

Copy Citation

Share

Share

Share to social media

Facebook

Twitter

URL

https://www.britannica.com/technology/ceramic-composition-and-properties

Feedback

External Websites

Feedback

Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).

Feedback Type

Select a type (Required)

Factual Correction

Spelling/Grammar Correction

Link Correction

Additional Information

Other

Your Feedback

Submit Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Britannica Websites

Articles from Britannica Encyclopedias for elementary and high school students.

ceramics - Children's Encyclopedia (Ages 8-11)

ceramics - Student Encyclopedia (Ages 11 and up)

Written by

Thomas O. Mason

Professor of Materials Science and Engineering, Northwestern University, Evanston, Illinois. Coeditor of Symposium on Point Defects and Related Properties of Ceramics and others.

Thomas O. Mason

Fact-checked by

The Editors of Encyclopaedia Britannica

Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.

The Editors of Encyclopaedia Britannica

Article History

Table of Contents

ceramic composition and properties

See all media

Category:

Science & Tech

Related Topics:

industrial ceramics

(Show more)

See all related content →

ceramic composition and properties, atomic and molecular nature of ceramic materials and their resulting characteristics and performance in industrial applications.Industrial ceramics are commonly understood to be all industrially used materials that are inorganic, nonmetallic solids. Usually they are metal oxides (that is, compounds of metallic elements and oxygen), but many ceramics (especially advanced ceramics) are compounds of metallic elements and carbon, nitrogen, or sulfur. In atomic structure they are most often crystalline, although they also may contain a combination of glassy and crystalline phases. These structures and chemical ingredients, though various, result in universally recognized ceramic-like properties of enduring utility, including the following: mechanical strength in spite of brittleness; chemical durability against the deteriorating effects of oxygen, water, acids, bases, salts, and organic solvents; hardness, contributing to resistance against wear; thermal and electrical conductivity considerably lower than that of metals; and an ability to take a decorative finish.In this article the relation between the properties of ceramics and their chemical and structural nature is described. Before such a description is attempted, though, it must be pointed out that there are exceptions to several of the defining characteristics outlined above. In chemical composition, for instance, diamond and graphite, which are two different forms of carbon, are considered to be ceramics even though they are not composed of inorganic compounds. There also are exceptions to the stereotypical properties ascribed to ceramics. To return to the example of diamond, this material, though considered to be a ceramic, has a thermal conductivity higher than that of copper—a property the jeweler uses to differentiate between true diamond and simulants such as cubic zirconia (a single-crystal form of zirconium dioxide). Indeed, many ceramics are quite conductive electrically. For instance, a polycrystalline (many-grained) version of zirconia is used as an oxygen sensor in automobile engines owing to its ionic conductivity. Also, copper oxide-based ceramics have been shown to have superconducting properties. Even the well-known brittleness of ceramics has its exceptions. For example, certain composite ceramics that contain whiskers, fibres, or particulates that interfere with crack propagation display flaw tolerance and toughness rivaling that of metals.Nevertheless, despite such exceptions, ceramics generally display the properties of hardness, refractoriness (high melting point), low conductivity, and brittleness. These properties are intimately related to certain types of chemical bonding and crystal structures found in the material. Chemical bonding and crystal structure are addressed in turn below.

Chemical bonds

Underlying many of the properties found in ceramics are the strong primary bonds that hold the atoms together and form the ceramic material. These chemical bonds are of two types: they are either ionic in character, involving a transfer of bonding electrons from electropositive atoms (cations) to electronegative atoms (anions), or they are covalent in character, involving orbital sharing of electrons between the constituent atoms or ions. Covalent bonds are highly directional in nature, often dictating the types of crystal structure possible. Ionic bonds, on the other hand, are entirely nondirectional. This nondirectional nature allows for hard-sphere packing arrangements of the ions into a variety of crystal structures, with two limitations. The first limitation involves the relative size of the anions and the cations. Anions are usually larger and close-packed, as in the face-centred cubic (fcc) or hexagonal close-packed (hcp) crystal structures found in metals. (These metallic crystal structures are illustrated in Figure 1.) Cations, on the other hand, are usually smaller, occupying interstices, or spaces, in the crystal lattice between the anions.

The second limitation on the types of crystal structure that can be adopted by ionically bonded atoms is based on a law of physics—that the crystal must remain electrically neutral. This law of electroneutrality results in the formation of very specific stoichiometries—that is, specific ratios of cations to anions that maintain a net balance between positive and negative charge. In fact, anions are known to pack around cations, and cations around anions, in order to eliminate local charge imbalance. This phenomenon is referred to as coordination.

Get a Britannica Premium subscription and gain access to exclusive content.

Subscribe Now

Most of the primary chemical bonds found in ceramic materials are actually a mixture of ionic and covalent types. The larger the electronegativity difference between anion and cation (that is, the greater the difference in potential to accept or donate electrons), the more nearly ionic is the bonding (that is, the more likely are electrons to be transferred, forming positively charged cations and negatively charged anions). Conversely, small differences in electronegativity lead to a sharing of electrons, as found in covalent bonds.

Secondary bonds also are important in certain ceramics. For example, in diamond, a single-crystal form of carbon, all bonds are primary, but in graphite, a polycrystalline form of carbon, there are primary bonds within sheets of crystal grains and secondary bonds between the sheets. The relatively weak secondary bonds allow the sheets to slide past one another, giving graphite the lubricity for which it is well known. It is the primary bonds in ceramics that make them among the strongest, hardest, and most refractory materials known.

Crystal structure

Figure 2A: The arrangement of magnesium and oxygen ions in magnesia (MgO); an example of the rock salt crystal structure.Crystal structure is also responsible for many of the properties of ceramics. In Figures 2A through 2D representative crystal structures are shown that illustrate many of the unique features of ceramic materials. Each collection of ions is shown in an overall box that describes the unit cell of that structure. By repeatedly translating the unit cell one box in any direction and by repeatedly depositing the pattern of ions within that cell at each new position, any size crystal can be built up. In the first structure (Figure 2A) the material shown is magnesia (MgO), though the structure itself is referred to as rock salt because common table salt (sodium chloride, NaCl) has the same structure. In the rock salt structure each ion is surrounded by six immediate neighbours of the opposite charge (e.g., the central Mg2+ cation, which is surrounded by O2− anions). This extremely efficient packing allows for local neutralization of charge and makes for stable bonding. Oxides that crystallize in this structure tend to have relatively high melting points. (Magnesia, for example, is a common constituent in refractory ceramics.)

Figure 2B: The arrangement of uranium and oxygen ions in urania (UO2); an example of the fluorite crystal structure.The second structure (Figure 2B) is called fluorite, after the mineral calcium fluoride (CaF2), which possesses this structure—though the material shown is urania (uranium dioxide, UO2). In this structure the oxygen anions are bonded to only four cations. Oxides with this structure are well known for the ease with which oxygen vacancies can be formed. In zirconia (zirconium dioxide, ZrO2), which also possesses this structure, a great number of vacancies can be formed by doping, or carefully inserting ions of a different element into the composition. These vacancies become mobile at high temperatures, imparting oxygen-ion conductivity to the material and making it useful in certain electrical applications. The fluorite structure also exhibits considerable open space, especially at the centre of the unit cell. In urania, which is used as a fuel element in nuclear reactors, this openness is believed to help accommodate fission products and reduce unwanted swelling.

Figure 2C: The arrangement of titanium, barium, and oxygen ions in barium titanate (BaTiO3); an example of the perovskite crystal structure.The third structure (Figure 2C) is called perovskite. In most cases the perovskite structure is cubic—that is, all sides of the unit cell are the same. However, in barium titanate (BaTiO3), shown in the figure, the central Ti4+ cation can be induced to move off-centre, leading to a noncubic symmetry and to an electrostatic dipole, or alignment of positive and negative charges toward opposite ends of the structure. This dipole is responsible for the ferroelectric properties of barium titanate, in which domains of neighbouring dipoles line up in the same direction. The enormous dielectric constants achievable with perovskite materials are the basis of many ceramic capacitor devices.

Figure 2D: The arrangement of copper, yttrium, oxygen, and barium ions in yttrium barium copper oxide (YBa2Cu3O7); an example of a superconducting ceramic crystal structure.The noncubic variations found in perovskite ceramics introduce the concept of anisotropy—i.e., an ionic arrangement that is not identical in all directions. In severely anisotropic materials there can be great variation of properties. These cases are illustrated by yttrium barium copper oxide (YBCO; chemical formula YBa2Cu3O7), shown in Figure 2D. YBCO is a superconducting ceramic; that is, it loses all resistance to electric current at extremely low temperatures. Its structure consists of three cubes, with yttrium or barium at the centre, copper at the corners, and oxygen at the middle of each edge—with the exception of the middle cube, which has oxygen vacancies at the outer edges. The critical feature in this structure is the presence of two sheets of copper-oxygen ions, located above and below the oxygen vacancies, along which superconduction takes place. The transport of electrons perpendicular to these sheets is not favoured, making the YBCO structure severely anisotropic. (One of the challenges in fabricating crystalline YBCO ceramics capable of passing large currents is to align all the grains in such a manner that their copper-oxygen sheets line up.)

Nonconductivity

Ordinarily, ceramics are poor conductors of electricity and therefore make excellent insulators. Nonconductivity arises from the lack of “free” electrons such as those found in metals. In ionically bonded ceramics, bonding electrons are accepted by the electronegative elements, such as oxygen, and donated by the electropositive elements, usually a metal. The result is that all electrons are tightly bound to the ions in the structure, leaving no free electrons to conduct electricity. In covalent bonding, bonding electrons are similarly localized in the directional orbitals between the atoms, and there are no free electrons to conduct electricity.

There are two ways that ceramics can be made electrically conductive. At sufficiently high temperatures point defects such as oxygen vacancies can arise, leading to ionic conductivity. (This is pointed out in the case of zirconia, above.) In addition, the introduction of certain transition-metal elements (such as iron, copper, manganese, or cobalt), lanthanoid elements (such as cerium), or actinoid elements (such as uranium) can produce special electronic states in which mobile electrons or electron holes arise. The copper-based superconductors are a good example of conductive transition-metal oxide ceramics—in this case, conductivity arising at extremely low temperatures.

Brittleness

Unlike most metals, nearly all ceramics are brittle at room temperature; i.e., when subjected to tension, they fail suddenly, with little or no plastic deformation prior to fracture. Metals, on the other hand, are ductile (that is, they deform and bend when subjected to stress), and they possess this extremely useful property owing to imperfections called dislocations within their crystal lattices. There are many kinds of dislocations. In one kind, known as an edge dislocation, an extra plane of atoms can be generated in a crystal structure, straining to the breaking point the bonds that hold the atoms together. If stress were applied to this structure, it might shear along a plane where the bonds were weakest, and the dislocation might slip to the next atomic position, where the bonds would be re-established. This slipping to a new position is at the heart of plastic deformation. Metals are usually ductile because dislocations are common and are normally easy to move.

Figure 3: Barriers to slip in ceramic crystal structures. Beginning with the rock salt structure of magnesia (MgO; shown at left), in which there is a stable balance of positive and negative charges, two possible crystallographic planes show the difficulty of establishing stable imperfections. The (111) plane (shown at top) would contain atoms of identical charge; inserted as an imperfection into the crystal structure, such an imbalanced distribution of charges would not be able to establish a stable bond. The (100) plane (shown at bottom) would show a balance between positive and negative charges, but a shear stress applied along the middle of the plane would force identically charged atoms into proximity—again creating a condition unfavourable for stable bonding.In ceramics, however, dislocations are not common (though they are not nonexistent), and they are difficult to move to a new position. The reasons for this lie in the nature of the bonds holding the crystal structure together. In ionically bonded ceramics some planes—such as the so-called (111) plane shown slicing diagonally through the rock salt structure in Figure 3, top—contain only one kind of ion and are therefore unbalanced in their distribution of charges. Attempting to insert such a half plane into a ceramic would not favour a stable bond unless a half plane of the oppositely charged ion was also inserted. Even in the case of planes that were charge-balanced—for instance, the (100) plane created by a vertical slice down the middle of the rock salt crystal structure, as shown in Figure 3, bottom—slip induced along the middle would bring identically charged ions into proximity. The identical charges would repel each other, and dislocation motion would be impeded. Instead, the material would tend to fracture in the manner commonly associated with brittleness.

In order for polycrystalline materials to be ductile, they must possess more than a minimum number of independent slip systems—that is, planes or directions along which slip can occur. The presence of slip systems allows the transfer of crystal deformations from one grain to the next. Metals typically have the required number of slip systems, even at room temperature. Ceramics, however, do not, and as a result they are notoriously brittle.

Glasses, which lack a long-range periodic crystal structure altogether, are even more susceptible to brittle fracture than ceramics. Because of their similar physical attributes (including brittleness) and similar chemical constituents (e.g., oxides), inorganic glasses are considered to be ceramics in many countries of the world. Indeed, partial melting during the processing of many ceramics results in a significant glassy portion in the final makeup of many ceramic bodies (for instance, porcelains), and this portion is responsible for many desirable properties (e.g., liquid impermeability). Nevertheless, because of their unique processing and application, glasses are treated separately in the article industrial glass.

Powder processing

Unlike metals and glasses, which can be cast from the melt and subsequently rolled, drawn, or pressed into shape, ceramics must be made from powders. As pointed out above, ceramics are seldom deformable, especially at room temperature, and the microstructural modifications achieved by cold-working and recrystallizing metals are impossible with most ceramics. Instead, ceramics are usually made from powders, which are consolidated and densified by sintering. Sintering is a process whereby particles bond and coalesce under the influence of heat, leading to shrinkage and reduction in porosity. A similar process in metal manufacturing is referred to as powder metallurgy.

Powder processing is used to make products that are normally identified as traditional ceramics—namely, whitewares such as porcelain and china, structural clay products such as brick and tile, refractories for insulating and lining metallurgical furnaces and glass tanks, abrasives, and cements. It also is used in the production of advanced ceramics, including ceramics for electronic, magnetic, optical, nuclear, and biological applications. Traditional ceramics involve large volumes of product and relatively low value-added manufacturing. Advanced ceramics, on the other hand, tend to involve smaller volumes of product and higher value-added manufacturing.

ceramic materials的中文是什么? - 知乎

ceramic materials的中文是什么? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册玻璃陶瓷水泥材料科学ceramic materials的中文是什么?按照国外的教科书,ceramic materials 包括了陶瓷、玻璃和水泥,但 ceramic(s) 这词本身指陶瓷。中文可以用“无机非金属材料”这…显示全部 ​关注者22被浏览12,004关注问题​写回答​邀请回答​好问题​添加评论​分享​9 个回答默认排序知乎用户在我所接触的化学领域(溶胶-凝胶,氧化铝透明材料,导热...),均称为陶瓷材料.发布于 2013-09-09 15:21​赞同 8​​2 条评论​分享​收藏​喜欢收起​匿名用户无机非金属材料(包括水泥、玻璃、耐火材料、陶瓷这几大类),ceramic以前称硅酸盐,现在称为无机非金属;在特定领域或者非材料业内人士认为可以特指陶瓷这个概念应该是材料专业本科生应掌握的基本概念编辑于 2014-09-19 10:36​赞同 3​​添加评论​分享​收藏​喜欢

Page restricted | ScienceDirect

Page restricted | ScienceDirect

Your Browser is out of date.

Update your browser to view ScienceDirect.

View recommended browsers.

Request details:

Request ID: 8609a8d31f670507-HKG

IP: 49.157.13.121

UTC time: 2024-03-07T09:46:38+00:00

Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36

About ScienceDirect

Shopping cart

Contact and support

Terms and conditions

Privacy policy

Cookies are used by this site. By continuing you agree to the use of cookies.

Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.

ceramic是什么意思_ceramic的翻译_音标_读音_用法_例句_爱词霸在线词典

mic是什么意思_ceramic的翻译_音标_读音_用法_例句_爱词霸在线词典首页翻译背单词写作校对词霸下载用户反馈专栏平台登录ceramic是什么意思_ceramic用英语怎么说_ceramic的翻译_ceramic翻译成_ceramic的中文意思_ceramic怎么读,ceramic的读音,ceramic的用法,ceramic的例句翻译人工翻译试试人工翻译翻译全文简明柯林斯牛津ceramicCET6/GRE/IELTS英 [səˈræmɪk]美 [səˈræmɪk]释义n.陶瓷(制品); 制陶术大小写变形:Ceramic点击 人工翻译,了解更多 人工释义词态变化复数: ceramics;实用场景例句全部陶瓷的陶制的陶瓷制品陶瓷器an exhibition of ceramics by Picasso毕加索陶瓷作品展牛津词典ceramic tiles瓷砖牛津词典...ceramic tiles.瓷砖柯林斯高阶英语词典...items made from hand-painted ceramic.手绘瓷砖制品柯林斯高阶英语词典...a collection of Chinese ceramics.一批中国陶瓷柯林斯高阶英语词典Acrylic is the second ceramic sanitary ware, after the best capable of producing new material.亚克力是继陶瓷之后能够制造卫生洁具的最好的新型材料.期刊摘选Includes composite materials and ceramic fibers.包括合成材料和陶瓷纤维.期刊摘选Conclusion This ceramic has no cytotoxicity or abnormal oral mucous membrane irritating response.结论这种陶瓷材料不具有细胞毒性及对口腔黏膜的不良刺激反应.期刊摘选Our corporation have engaged in ceramic production for many years.我们公司从事陶瓷生产多年.期刊摘选MultiLayer Ceramic Capacitors can store amounts of energy in a minimum of space.多层陶瓷电容器能在一个最小的空间里存储大量的能量.期刊摘选Sound product knowledge lighting, metal, glass, poly ceramic ware.具备丰富的家具,木材, 五金, 玻璃, 树脂,陶瓷等产品知识.期刊摘选Uses glass and ceramic wastes as aggregate.使用玻璃和陶瓷废料作材料.期刊摘选The laminate model of porous ceramic membranes proposed by Dong Junhang et al was modified.对董军航等人提出的多孔陶瓷膜层状结构模型进行了改进.期刊摘选We hope that our cooperation can the ancient ceramic art wonderful work full of new glory.希望我们的合作能让陶瓷这一古老艺术奇葩焕发出新的光彩.期刊摘选The art or technique of making objects of ceramic, especially from fired clay.'陶瓷'.''学制作''.'陶瓷'.''物品的''.'工艺'. ''或技术, 尤指用耐火粘土制.期刊摘选In order to assure their properties, ceramic materials are usually sintered integrally in a sintering furnace.陶瓷材料烧结通常需要整体在窑炉内烧结, 以保证材料性能.期刊摘选Learning the ceramic manufacturing process, especially the process of Kiln.学习陶瓷产品的制造工艺, 特别是烧窑工艺.期刊摘选Bioactive ceramic coating is widely used in the field of medicine for its excellent biological compatibility.生物活性陶瓷因其优良的生物相容性,广泛应用于临床医学领域.期刊摘选The USA Museum will collect and display ceramic art work of the best US artists.永久陈列和收藏美国优秀陶艺家的作品.期刊摘选Mainly produces ceramic bearings, plastic bearings, Stainless steel bearings and all kinds of engineering plastics Cage.主营陶瓷轴承, 塑料轴承, 不锈钢轴承和各种工程塑料保持架.期刊摘选Ceramic products includes polished tile, glaze tile, etc.我司加工销售的陶瓷产品主要有:抛光砖, 釉面砖等.期刊摘选This is a whole package, and this is our series of ceramic tiles.这是一个整体配套的, 这是我们的瓷砖系列.期刊摘选She put the roses in a white ceramic pot on the table.她把玫瑰插在桌子上的一个白色陶罐中.期刊摘选The order for ceramic tiles has been booked in.瓷砖的订单已登记下来了.《简明英汉词典》Some ceramic works of art are shown in this exhibition.这次展览会上展出了一些陶瓷艺术品.《简明英汉词典》The walls and floors are clad with ceramic tiles.墙面和地板上都贴着瓷砖。柯林斯例句收起实用场景例句英英释义Noun1. an artifact made of hard brittle material produced from nonmetallic minerals by firing at high temperaturesAdjective1. of or relating to or made from a ceramic;"a ceramic dish"收起英英释义行业词典医学陶瓷的   陶瓷制品:泥土物质加热制成,其中硅和硅酸盐占主要位置   金属氧化物   释义词态变化实用场景例句英英释义行

新型陶瓷与精细工艺国家重点实验室

新型陶瓷与精细工艺国家重点实验室

ENGLISH

首页

实验室概况

实验室简介

主任致辞

学术委员会

行政机构

大事记

研究队伍

人才队伍

两院院士

教师队伍

工程技术人员

科学研究

研究方向

奖励荣誉

知识产权

开放平台

学术期刊

开放课题

管理办法

表格下载

联系我们

最新动态研究进展

先进陶瓷材料2023学术研讨会顺利召开

先进陶瓷材料2023学术研讨会(Joint Workshop on Advanced Ceramic Materials 2023)于2023年12月11日在新型陶瓷与精细工艺国家重点实验室(清华大学)召开。本次会议是...

查看更多

冰雪“清”年,冬奥分享

“更高,更快,更强,更团结”的北京冬奥会和冬残奥会已圆满闭幕,2022年3月17日,材料学院无机第一党支部(成员为陶瓷国重教师)、材博192党支部、材博202党支部和材硕...

查看更多

无机第一、第二党支部举办全覆盖联合组织生活会 暨《榜样6》集中学习研讨会

为响应理论学习全覆盖的号召,2021年12月30日中午,清华大学材料学院无机第一、第二党支部于逸夫技术科学楼A514举办全覆盖联合组织生活会暨《榜样6》集中学习研讨会。参...

查看更多

先进陶瓷材料2021学术研讨会在重点实验室举行

先进陶瓷材料2021学术研讨会于2021年12月25日在南方科技大学工学院召开。本次会议是先进陶瓷材料方向交流系列会议,会议由新型陶瓷与精细工艺国家重点实验室(清华大学...

查看更多

研究进展

01-092024

符汪洋、万春磊合作基于石墨烯边缘构建量子电容传感器

01-082024

沈洋课题组在高温储能聚合物电介质领域取得新进展

12-272023

符汪洋课题组合作在硅晶圆上直接生长石墨烯构建高灵敏生化传感平台

12-012023

吕瑞涛课题组在高性能电解水催化材料领域取得进展

11-172023

李敬锋课题组在高效新型热电材料研究领域取得进展

查看更多

通知公告

MORE

0506

拉曼与谐波成像系统开放运行

1312

激光共聚焦显微镜高真空电子束蒸发镀膜机试运行

2211

霍尔效应测量系统试运行

2610

紫外/可见/近红外分光光度计X 射线光电子能谱仪(XPS)试运行

学术报告

MORE

1905

团簇酶与神经创伤

2202

氧化钛纳米棒的制备以及在染料敏化太阳电池中的应用

1011

Carbon nanotube electronics

0111

Imaging ferroelastic domain dynamics with nanoscale X-ray diffraction at the M…

3110

Self-Healing Materials: the concepts and their realization

2710

Microscale 3D Assembly

实验室简介

新型陶瓷与精细工艺国家重点实验室依托清华大学,实验室属于国家教育部系统唯一的从事高性能陶瓷材料领域科学研究与人才培养工作的国家重点实验室。本实验室的前身-清华大学无机非金属材料学科于1987年被评为重点学科;1988年列为世行贷款重点学科发展项目,1991年开始建设"新型陶瓷与精细工艺"国家重点实验室,于1995年通过国家验收对外开放。实验室依托在清华大学,位于逸夫技术科学馆二段内。

查看更多

教育部

科学技术部

清华大学

材料学院

预约系统

电话:010-62772556 邮箱:ceramicslab@tsinghua.edu.cn地址:清华大学材料学院逸夫技术科学楼 邮编:100084Copyright © 2020 SKL 新型陶瓷与精细工艺国家重点实验室 版权所有